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Abstract

This paper describes an active (real
time) recognition strategy whereby
information is inferred iteratively across
several viewpoints in descent imagery.
We will show how we use inverse theory
within the context of parametric model
generation, namely height and spectral
reflection functions, to generate s model
assertions. Using this strategy in an
active context implies that, from every
viewpoint, the proposed system must
refine its hypotheses taking into account
the image and the effect of uncertainties
as well. The proposed system employs
probabilistic solutions to the problem of
iteratively merging information (images)
from several viewpoints. This involves
feeding the posterior distribution from all
previous images as a prior for the next
view. Novel approaches will be
developed to accelerate the inversion
search using novel statistic
implementations and reducing the
model complexity using foveated vision.

Foveated vision refers to imagery where
the resolution varies across the image.
In this paper, we allow the model to be
foveated where the highest resolution
region is called the foveation region.
Typically, the images will have dynamic
control of the location of the foveation

region. For descent imagery in the
Entry, Descent and Landing (EDL)

process, it is possible to have more than
one foveation region.

This research initiative is directed

towards descent imagery in connection
with NASA's Entry Descent Landing
(EDL) applications. 3-D Model
Recognition, Generation, Fusion,
Update and Refinement (RGFUR or
RG4) for height and the spectral
reflection characteristics are in focus for

various reasons, one of which is the
prospect that their interpretation will
provide for real time active vision for
automated EDL.

1 Introduction and Background

The period of the Entry, Descent and
Landing is the missions most critical
period with the highest risk factor for a
potential Loss of Vehicle (LOV). Since
distant missions such as Mars are

constrained in payload and design,
NASA must employ technology to
intelligently use all available resources,
optimally integrate sensor data and
perform real-time decision and reason
for successful Entry, Descent and
Landing.

Understanding the importance of Entry
Descent and Landing is best illustrated
by describing the critical phases of an
Entry, Descent and Landing process for
a spacecraft. It is estimated that the
spacecraft's descent from the time it hits
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the upper atmosphere until it lands
takes no more than 4 minutes and a few

seconds to accomplish the final landing
as in the case of the Mars Polar Lander.

Enabling technologies such as active
vision can continually operate and
integrate the vision system to actively
interpret images for enhanced model
recognition which can play a crucial role
in mitigating major risk factors.

We estimate that the period where on-
board intelligent systems can start
capturing the landing site's topographic
details starts about two minutes before

landing and the spacecraft is expected
to be moving at about 1,000 miles per
hour around 5 miles above the surface.

About 70 to 100 seconds before landing
a landing radar will be activated. To this
end, we anticipate to having our
proposed 3-D Model Recognition,
Generation, Fusion, Update and
Refinement (RGFUR or RG4) to include
radar readings and other sensor
modalities (gyros and inertia guidance).
The radar will be able to gauge the
spacecraft's altitude about 40 seconds
after it is turned on, at an altitude of
about 1.5 miles above the surface. With

a robust RG4 system, the spacecraft
can rely on the on-board camera for
final touch down.

2 Similar Work and Comparison

Johnson's work described in [10]
addresses the problem of autonomous
operation close to a small body. The
work described in our paper differs from,

Entry, descent and land;ng

and is an advance over, the work in [10]
in a number of ways. In this paper we
argue for a unified model of the surface
of interest, with all observations aimed
at building up knowledge of this model,
in contrast to an approach that builds up
a model piecewise and in a manner
dependent on the detection of features
in the images. We also propose doing
absolute location relative to the entire

surface model, an approach that is



much more robust and accurate than
location relative to a small number of

landmarks. It also does not rely on the
presence of explicit landmarks on the
object, but instead uses the entire
surface essentially as one, extended
landmark. Finally, the approach we
advocate gives explicit uncertainty
estimates of the surface and position;
the work in [10] provides uncertainty
estimates by running Monte Carlo
simulations. After all, a typical risk
associated with the landing process is to
be able to resolve the surface to the

level of details and be capable of
avoiding a boulder, a ditch or a crack
which could result in a Loss of Vehicle

(LOV).

3 Research Objectives

The ambition of this paper in active
vision is to continually operate and
integrate a vision system that can
actively interpret images for enhanced
model recognition. The proposed
approach exploits super-resolution
techniques [3][4] and focus of attention
(foveated vision) to enable better model
recognition in descent imagery.

This research initiative is directed
towards descent imagery in connection
with NASA's Entry Descent Landing
(EDL) applications. 3-D Model
Recognition, Generation, Fusion,
Update and Refinement (RGFUR or
RG4) for height and the spectral
reflection characteristics are in focus for

various reasons, one of which is the
prospect that their interpretation will
provide for real time active vision for
automated EDL.

4 Model Recognition, Generation,
Fusion, Update and Refinement
(RG4) and Super-Resolution

We are investigating a Bayesian model-
based approach to integrating
information from multiple images of the
same area into a unified model at a

resolution higher than that of the
contributing images (super-resolution).
This model is a representation of the
physical parameters describing the
surface. The physical parameters we
use are heights at each grid point and
the surface reflectance properties at
each grid point, such as albedo (for a
Lambertian reflectance model) or more
generally a parameterized bi-directional
reflectance distribution function (BRDF).
Each image is an independent sample
of the area of interest, and by combining
the information from these separate
images, surface features smaller than
the image pixel scale can be captured.
Because the model is constructed at

finer resolution than any image, it is
possible to use it to accurately project
what that surface would look like from

any view point, under any lighting
conditions. This projection is computed
by summing the contribution from each
surface patch onto each synthesized
image pixel, weighted by the camera
point spread function (PSF). This
projection process is called rendering in
computer graphics, and the realism
achieved by current computer graphics
indicates the viability of accurate image
projection from a surface model.

The essence of super-resolution in RG4
is to use Bayesian inference to invert
the image rendering process. That is, in
rendering, the surface and its
reflectance properties are assumed
known, as is the location and properties
of the camera and the lighting source
(typically the sun), and this information
is used to generate an image under
those conditions. In the Bayesian
model-based inference process, the
rendering process is reversed. That is,
given the images, we find the most likely
surface that would have generated
them.



The model would consist of a
discretized grid covering the area of
interest, where each grid point stores
the geophysical parameters of the
correspondingground location. These
parametersmainly includeelevationand
reflectance spectral characteristics.
This model is chosen so that what the
camera is expected to see can be
projectedfrom the model. Modelupdate
consists of comparing the expected
pixel values with the observed, and
changing the model to better fit the data
(including previous data). This update
will be accomplished by computationally
efficient Bayesian inference that inverts
the image rendering process as used in
computer graphics. The search for the
most likely surface will be performed by
a novel type of gradient descent, where
the gradient is computed analytically.

Figure 1 Top image is one of the two
images taken from Clementine imagery
to super-resolve the image on the

bottom. With two images only (similar to
the one on the left), the right image
contains more detailed features (The
right image is inferred from 3D model).

NASA has developed this process of
model-based inversion over the last few

years, starting from the simple 2-D
models, and working up to the full 3-D
surface reconstruction problem [3][4].
We are now able to super-resolve the
heights and albedos of the true surface

from multiple images, where the images
can be taken from any viewpoint and
under any lighting conditions. On
artificial images generated from the
model, we are able to reconstruct the

surface to essentially the noise level of
the data.

4.1 Research

Super-resolution is a very useful product
for the Entry, Descent, and Landing
process where the resolved model is
beyond what can be extracted using the
best available image. The main reason
for developing the super-resolution
capability is to allow the integration of
information from different images
without the problem of aliasing and
mismatched pixel grids. Super-
resolution solves this problem because
any pixel maps onto many ground
points, so that intensity of any pixel can
be accurately computed by summing up
the corresponding ground points. In fact,
the surface model becomes the

repository of the pixers information, so
that a system does not need to have
multiple images persistent in its
memory, but rather a model. EDL
processes and post processes will thus
interact with the surface model, and can

view it from any direction or under any
lighting conditions, including viewpoints
that were not originally available!

In implementing this research, we
extend 3-D super-resolution algorithms
to solve a number of technical problems



that arise in this application. In
particularwe will findworkablesolutions
to the following problems using the
approachoutlinedbelow.
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Figure 2: Top image is one of the twelve
synthetic images of Silicon Valley area
used to super-resolve the second
image. With twelve images only, the

right image contains crisp detailed
features. The bottom plot is the surface
inferred from the images (not shown is
the albedo field).

Shape from Motion

A main objective of RG4 is to achieve a
surface inference in "real time". To that

extend we obtain a fast shape from
motion alogrithm which can feed itself
as prior knowledge. Standard "shape
from motion" algorithms [1] maintain the
assumption of constant surface
reflectance properties and are not
extendable in nature to super-resolution.
We plan to use our new shape-from-
motion technique to "bootstrap" a
super-resolution inference for natural
surface formation where varying albedo
properties and shadows are correctly
accounted for.

Mufti-Spectral Integration

EDL on-board instruments have multiple
spectral bands will have different
coverages, i..e. different widths and
ranges. Our approach to solving the
problem posed by integrating this
heterogeneous information is to
consider the model's surface by a
wavelength dependent reflectance.
That is, instead of a single number to
represent the (Lambertian) surface
reflectance for a particular band, we will
represent the reflectance as a "smooth"
function of wavelength, where the
function is represented by a small
number of coefficients that are
estimated from the data. This function

can then be integrated with each band
spectral response function (a property of
the instrument) to get the expected
reflectance for that band.

Super-Resolution

One of the major achievements in this
research is the method to achieve a

recursive linear minimization as part of



the desired inference for three-
dimensional surface reconstruction to
the extent that the resolutionof inferred
surface mesh is higher than the spatial
resolution of input images. This
technique also allows images to be
super-resolved in both two or three
dimensions (accordingto the nature of
thedata).

Accelerated Search

In statistical inference scheme, the
solution for the gradient step in linear
minimization for large sparse linear
systems for which direct methods such
as Conjugate Gradient is expensive in
terms of both time and storage cost. For
the class of descent imagery problem of
using Bayesian inference for 3-D model
parameter estimation, we plan to use a
novel iterative technique which solves
the problem of search minimization

efficiently in terms of storage and
memory cost. This novel technique
takes root in a recent discovery for a
model prior which reduces the

covariance matrix complexity from a
quadratic to a linear representation. As
a result, the amount data will be
relatively linear to the size of the model
which is essential especially in a scarce
computing environment.

Foveated Vision

We also support a Foveated Vision
capability with variable resolution--that
is, the surface triangles may be very
small in some areas (super-resolved)
and very coarse in other areas (under-
resolved). The primary value of foveated
vision is in the model reconstruction

where high resolution information is
transmitted in the regions of the image
that are selected as important. On the
other hand, low resolution information is

processed at a second stage under
contraints (e.g. time and computing
resources). Foveated vision is crutial in
descent imagery and will enable control

in the resolution of pixel/model
relationships.

Figure 3: Left image is our planned
'spider-web' type mesh with a foveated
center (not necessary centered in the
middle). Right image is a typical non-
uniform grids.

We extend 3-D surface models to

foveated models using traditional
triangulated surface, but distribution of
the heights would no longer be tied to a
uniform grid but to Foveated model
(Figure 3.a). This extension is not

difficult in principle, but the changed
representation affects triangle indexing,
and so affects efficiency.

4.2 Active Recognition: Concepts
and Technical Aspects

The key idea behind active recognition
in a sequential recognition strategy is
that of improving interpretation by
accumulating evidence in real time. The
important aspect in the Entry Descent
and Landing recognition problem is to
compute on-line a 3D model from
sensory data linked to the different
sensor hardware which support the
different phases in descent process
(e.g. different cameras, FOV, RADAR,
LADAR, altimeters, gyros etc.).

It is clearly understood that the image
resolution in the early stage does not
guarantee enough information either for



quantitative or for qualitative model
recognition, But acquiring uncertainties
serves to condition prior expectations
about the model and establishes a

quantitative representation.

Practically, a meaningful qualitative
recognition for a 3D-model
reconstruction can be achieved after

only a few sequences of images have
been collected. To achieve a

quantitative recognition the 3D model
recognition is optimally obtained by
computing the probability of the 3D
model given the image sequences or

Where hi and p_ are the parameters of a

height field and an albedo field.

At different stages along the descent
process, image sequences with small
frame-to-frame camera motion can be

treated actively to provide an early 3D
model. This real time behavior

leverages from small motions, which
minimizes the correspondence problem
between successive images and the
knowledge of the camera trajectory.
However, this sacrifices depth resolution
of the small baseline between

consecutive image pairs [9]. Solution to
this problem is trivially sought through a
probabilistic incremental integration (e.g.
Kalman Filter). In this particular active
recognition, we will employ a matching
and extraction technique which takes
advantage of the lateral motion of the
camera and transforms the search

problem to a one-dimensional search
problem (search is limited to foveated
region).

Shape from shading-derived techniques
provides gradient vector fields of the
surface 7h(r) and can be readily

obtained in "real-time" from a single
image source under very simplifying
assumptions. Our approach is to

reconstruct the height field h(r) without

the knowledge of the boundary
conditions, which are directly obtained
by the other sensor modalities and; in
particular, the radar readings at a later
stage. With single radar readings (initial
condition), the height field h(r) is readily
reconstructed.

5 Recursive Super-resolution

Our current and existing super-
resolution system can address many
problems: the images may be of
differing resolutions (e.g. multiple
concurent cameras); the surface albedo
is not assumed constant; the density of
the model is user and data driven.

The model that we are trying to infer is
defined to be the topology and
reflectance properties of the surface
being observed. For simplicity we
define the surface over a grid of points,
and currently define a height value, hi

and an albedo value, p_ at each grid

point. Bayes' theorem then states that
to infer values for the heights and
albedos from the image data, we use
the expression

p(h, p l[_...I.) = p(l_.../. I h, p)p(h,p),

which states that the posterior
distribution of the heights and albedos is
proportional to the likelihood - the
probability of observing the image data,
l, given the current values of the
heights and albedos - multiplied by the
prior distribution over the model.

To the extent of super-resolution, we
make the assumption that the likelihood
is due to zero mean Gaussian errors

between the observed images, I, and
the images synthesized from the model,

p(l,...I, Ih,p)= II Exp[-½( !_-i(h'p)')2]:



,_(h, p), resulting in the likelihood being

where the product is taken over all
pixels in all the images in the data set.
The prior used is based on penalizing
the curvature of the surface. It is a

penalty encouraging a continuity in the
inferred surface.

Because the likelihood is a function of

the images synthesized from the model,
it is clearly a non-linear function of the
heights and albedos, and this makes
optimizing the posterior distribution
difficult. However, we have found that
an optimal solution to the nonlinear
function can be obtained by a novel
Conjugate Gradient (CG) search.

^

We expand l(h,p) about the current

estimate, ho,P0, and replace it by

where D is the matrix of derivatives

evaluated at h0,P0

onpixeli

D_.j = oqaeight(or albedo)j

The minimization of the log-posterior
then becomes the minimization of a

quadratic form, and can be performed
using the conjugate gradient method•
This minimization finds the minimum of

the local linear approximation. At the

minimum, we recompute ,/(h,p) and D

and minimize the log-posterior
iteratively.

5.1 The RG4 system: embedding
stronger prior

For an Entry and Descent real-time
process, strong prior about the surface
model is highly desirable and therefore
we plan to extend the super-resolution
technique to include the shading

information Vh,. Bayes' theorem then

states that to infer values for the heights
and albedos from the image data as well
from the slopes, we use the expression

p(h.p I I t...l. ) = p( l,.../, I h, p)p(h,p) p(Vh, - Vh )p(h, - h)

Here, it shall be remarked that hs and

Vh, are independent prior information

obtained separately (i.e. shape from
motion and image to surface gradient

mappings). Furthermore, hs will be

obtained directly from a fast shape from
motion method. Using the form of the
prior in the previous equation makes it
feasible to account for uncertainties in

the independent measurements of hs

and Vh,. In addition, we plan to use the

prior hs to integrate the radar and other

altimeter readings whenever they
become available. We therefore

"bootstrap'" the inference of the actual
height field and albedos. Potentially, this
leaves us with the advantage of
rewriting the Bayesian inference
process on the deviation (fluctuation)
between the prior and height field rather
than the height field itself, thus the
parameters will be

Sh = h- h s ,

and are believed to be small, such that a
fast convergence of the inference
process can be guaranteed.

6 Final Remarks

An operational software system based
on this proposed demonstration system
would use images to update the surface
model as soon as they are received.
The Bayesian approach gives a solution



to the problem of how much the prior
modelshouldbe believedwhenthe new
datadisagreeswith the priormodel. Not
only does this allowmodelupdatewhen
there is conflictinginformation,but it can
also serve as a change detection
warning system. This is possible
because the model projects expected
values. If measurements are many
standard deviations from expectations,
then it is a signal for likely change.

Another planned operation of the RG4
system is to use the constructed model
as a topographical map after the landing
phase. The super-resolved model can
be employed to focus the desired
exploration phase of the mission.
Models constructed from altitudes will
provide a much wider scope in the
landing site topography.
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